on third geometric-arithmetic index of graphs
نویسندگان
چکیده
continuing the work k. c. das, i. gutman, b. furtula, on second geometric-arithmetic indexof graphs, iran. j. math chem., 1(2) (2010) 17-28, in this paper we present lower and upperbounds on the third geometric-arithmetic index ga3 and characterize the extremal graphs.moreover, we give nordhaus-gaddum-type result for ga3.
منابع مشابه
On Third Geometric-Arithmetic Index of Graphs
Continuing the work K. C. Das, I. Gutman, B. Furtula, On second geometric-arithmetic index of graphs, Iran. J. Math Chem., 1(2) (2010) 17-28, in this paper we present lower and upper bounds on the third geometric-arithmetic index GA3 and characterize the extremal graphs. Moreover, we give Nordhaus-Gaddum-type result for GA3.
متن کاملOn Second Geometric-Arithmetic Index of Graphs
The concept of geometric-arithmetic indices (GA) was put forward in chemical graph theory very recently. In spite of this, several works have already appeared dealing with these indices. In this paper we present lower and upper bounds on the second geometric-arithmetic index (GA2) and characterize the extremal graphs. Moreover, we establish Nordhaus-Gaddum-type results for GA2.
متن کاملOn Third Geometric-Arithmetic Index of Graphs
Continuing the work K. C. Das, I. Gutman, B. Furtula, On second geometric−arithmetic index of graphs, Iran. J. Math Chem., 1 (2010) 17−27, in this paper we present lower and upper bounds on the third geometric−arithmetic index GA3 and characterize the extremal graphs. Moreover, we give Nordhaus−Gaddum−type result for GA3.
متن کاملon second geometric-arithmetic index of graphs
the concept of geometric-arithmetic indices (ga) was put forward in chemical graph theoryvery recently. in spite of this, several works have already appeared dealing with these indices.in this paper we present lower and upper bounds on the second geometric-arithmetic index(ga2) and characterize the extremal graphs. moreover, we establish nordhaus-gaddum-typeresults for ga2.
متن کاملThe second geometric-arithmetic index for trees and unicyclic graphs
Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...
متن کاملOn Second Geometric−Arithmetic Index of Graphs
The concept of geometric−arithmetic indices (GA) was put forward in chemical graph theory very recently. In spite of this, several works have already appeared dealing with these indices. In this paper we present lower and upper bounds on the second geometric−arithmetic index (GA2) and characterize the extremal graphs. Moreover, we establish Nordhaus−Gaddum−type results for GA2.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
iranian journal of mathematical chemistryناشر: university of kashan
ISSN 2228-6489
دوره 1
شماره Issue 2 (Special Issue Dedicated to the Pioneering Role of Ivan Gutman In Mathematical Chemistry) 2010
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023